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Report Summary 
 
In this report we address the use of perturbation theory for uncertainty analysis of software 

operation profile. First, we briefly describe the perturbation theory and then we explain how we 

relate this theory to our research work. The perturbation theory as a method for uncertainty 

analysis is applied and validated on three case studies: the software developed for the European 

Space Agency, NASA’s Hub Control System (HCS) from the International Space Station (ISS), 

and an e-commerce application. Finally, we present the future directions of our research on 

uncertainty analysis in software reliability.  
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1. Introduction 

Software reliability is defined as the probability that software product will work without 

failure in a specified environment for a specified exposure period. The exposure period can be 

execution time or software runs. The environment usually is characterized by a set of input states 

along with their probabilities of occurrence. This probability distribution over the input space 

that represents the frequencies of occurrence of possible input states in the operation of software 

application is known as operational profile. Thus, the predictive quality of software reliability 

models is affected by the ability to estimate the correct operational profile. However, building an 

operational profile is not an easy task, especially for a new product. Therefore, it is of critical 

importance to study the sensitivity of the software reliability to the errors in the operational 

profile, particularly when reliability estimates with high accuracy are required. 

In general, the estimation of a trustworthy operational profile is difficult because it requires 

anticipating the field usage of the software and a priori knowledge about the application and 

system environments. A typical example would be a flight control system of a spacecraft in 

which very critical software components are activated by physical events whose frequencies 

during the field usage are totally unknown. Further, in process control applications various 

software components are activated by complex sequences of events whose frequencies can 

hardly be estimated a priori. In other cases, a single operational profile is not sufficient to 

describe the use of the product by different users. Because the effort required to derive an 

operational profile for each group of users is usually extremely high, the usual solution is to 

adopt an approximate operational profile that represents a rough average of the operational 

profiles of the different users. In addition to the above difficulties, problems could arise due to 

the changes of the operational profile during the development and field usage of the software.  

Thus, software systems evolve because functions are added or modified. As a consequence, the 

way in which the software is used also evolves, and the operational profile changes.  This, of 

course, will invalidate any existing estimates of the operational profile.  

These reasons can easily lead to erroneous estimates of the operational profile which will 

directly affect the reliability estimate. Studying the variations of the reliability estimate due to 

the inaccuracy in the operational profile is especially important for NASA domain software 

which is designed to deal with events whose frequencies are difficult or impossible to predict 
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accurately. The objective to this project is to develop an architecture-based methodology for 

computing the sensitivity of software reliability to the operational profile errors.  

 In the first year of this project (FY02) we have developed a methodology for uncertainty 

analysis of architecture-based software reliability models suitable for large complex component-

based applications and applicable throughout the software life cycle [Goseva02a], [Goseva02b]. 

In order to estimate the system reliability using architecture-based model we need to know the 

software architecture (structure of component interactions), software usage described by the 

operational profile (relative frequencies of component interactions determined by transition 

probabilities), and software failure behavior (component reliabilities or failure rates) 

[Goseva01a], [Goseva01b]. Our methodology considers different approaches for building 

software architecture (intended approach and informed approach) and estimating component 

reliabilities (growth models, non-failed executions, and fault injection) as shown in Figure 1. 

This methodology for uncertainty analysis can be applied to any architecture-based software 

reliability model that has a close form solution for the system reliability. It addresses the 

parameter uncertainty problem and enables us to study how the uncertainty of parameters 

propagates in the system reliability. Within this methodology we are considering several 

different methods for uncertainty analysis (see Figure 2) [Goseva02b]. So far, we have used 

entropy [Kamavaram02], [Goseva02f], methods of moments [Goseva02d], [Goseva02e] and 

Monte Carlo simulation [Goseva02e]. We have applied and validated our methodology on two 

case studies [Goseva02b]: software developed for the European Space Agency and NASA’s Hub 

Control System (HCS) from the International Space Station (ISS). A detailed description of the 

application of our methodology on these case studies can be found in [Goseva02b]. 

The choice of the method for uncertainty analysis will depend on criteria such as data 

requirements, reliability measures derived, accuracy of the solutions, and scalability with respect 

to the number of components. Detailed comparison of the entropy, method of moments, and 

Monte Carlo simulation is presented in [Goseva02c].  

 In this report we focus on perturbation theory as a method for uncertainty analysis of the 

software operational profile. First, we briefly describe the perturbation theory and then apply it 

on three case studies: the software developed for the European Space Agency, NASA’s Hub 

Control System (HCS) from the International Space Station (ISS), and an e-commerce 

application.  
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Figure 1. Methodology for uncertainty analysis of software reliability 

 
Figure 2. Methods for uncertainty analysis in software reliability 
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2. Sensitivity analysis based on perturbation theory 
 

Perturbation theory provides mathematical means to study how the stationary distribution of 

a Markov chain containing an irreducible set of states changes as the transition probabilities of 

the chain vary. In our research we define the operational profile as a discrete time Markov chain 

with transition probability matrix P.  Using perturbation theory we can assess the sensitivity of 

stationary probabilities ][ iππ =

i

 to perturbations in the operational profile (i.e, transition 

probability matrix P). Since π can be interpreted as the expected execution rate of component i 

in the long run, it represents a measure of component usage which can be used to identify critical 

components.   

Let P be the transition probability matrix of a finite irreducible Markov Chain and ][ iππ =  be 

the stationary probability vector.  The stationary distribution vector of P is the positive vector πT 

= (π1, π2, …… , πn) satisfying 

πT P = πT,                (1) 1.
n

1j jπ =∑
=

Suppose P is perturbed to a matrix P~ , which is the transition probability matrix of an n 

state finite irreducible, homogenous Markov chain. Denoting by π~  the stationary probability 

vector of the perturbed matrix P~ , the aim is to assess the sensitivity of the stationary distribution 

vector in terms of the change P~-PE ≡  in the transition probability matrix. Sensitivity results 

concerning absolute perturbations have been phrased in terms of bounds given by the equation 

[Ipsen94] 

EkTT ≤−ππ ~          (2) 

where E  is the norm of the perturb matrix and k is a condition number used as measure of 

sensitivity. In the literature survey we came across eight existing perturbation bound, that is, 

eight different condition numbers k1,…,k8 .  Most of the condition numbers are expressed in 

terms of either the fundamental matrix  of the underlying Markov chain or the 

group inverse of A≡I-P [Meyer94], [Schweitzer68]. While several condition numbers provide 

good numerical measure of the maximal extent to which the magnitude of the perturbation can 

be amplified, some condition numbers suffer from certain shortcomings and are not satisfying for 

two reasons. First, irreducible chains exist for which the bounds are not tight, so the condition 

1)( −+≡ TeAZ π
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number k may seriously overestimate the sensitivity to perturbations. Second, the bounds 

generally provide very little information about the relative error in individual stationary 

probabilities. Moreover, it is theoretically possible to compute the condition numbers k but it is 

usually expensive to do so relative to computation of the stationary distribution vector itself 

[Meyer94], [Cho00], [Cho01].  

The condition number k8, expressed in terms of the mean first passage times in the 

Markov chain, is the smallest condition number, that is, it provides the tightest bound on the 

stationary probability. Further, viewing sensitivity in terms of mean passage times can 

sometimes help practitioners decide whether or not to expect sensitivity by merely observing the 

structure of the chain without computing or estimating the condition numbers. For example, no 

stationary probability of the Markov chain consisting of a dominant central state with 

connections to and from all other states can be excessively sensitive to perturbations in P.   
 

 
2.1.  Sensitivity analysis in terms of mean first passage times 

 
Let P and P~  be the transition probability matrices for the two irreducible n state Markov 

chains with respective stationary probability vectors  and . Let denote the mean first 

passage time from the i

Tπ

jj

Tπ~ ijM

th state to the jth state and  denote the mean return time for the jM th 

state in the unperturbed chain. The absolute change in the jth state stationary probability is given 

by equation [Cho00] 

∞⋅≠⋅≤− E
jjM

ijM
ji

jj
max

2
1~ππ ,                                                                                  (3) 

which is equivalent to saying that the relative change in jπ  is 

∞⋅
≠

⋅≤
−

EijM
jij

jj
max

2

~
1

π

ππ
 .                                                                                     (4) 

 In [Hunter00], [Hunter02a], [Hunter02b] a standard procedure for computing the mean 

first passage times of a finite irreducible discrete time Markov chains has been developed. If the 

stationary probability vector has already been computed then using either fundamental matrix 
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[ ,1-PIZ Π+−≡ ] where Π or Meyer’s group inverse [Meyer94] Teπ= Π−≡ ZA# , we can 

compute the matrix M. The diagonal elements of the matrix M specify the mean return time of 

the states and non-diagonal elements specify the mean first passage time from state i to state j. If 

 then matrix M is given by equation [Hunter02a] ][ #
ij

T a=π] 1 e−−[# TePIA +−= π

DALAImM dij ][][ ## +−==                                                            (5) 

 where , e is a column vector with all elements equal to 1, e’ is a row vector with all 

elements equal to 1, and . 

]1[=′= eeL

1)( −Π= dD

 

3. Application of perturbation analysis on case studies 
3.1.  European Space Agency case study 

The application from the European Space Agency [Goseva01b] provides language-oriented 

user interface, which allows the user to describe the configuration of an array of antennas. Its 

purpose is to prepare a data file in accordance with a predefined format and characteristics from 

a user, given the array antenna configuration described using the Array Definition Language. 

The program was developed in C language and consists of almost 10,000 lines of code. It has 

been extensively used after the last fault removal without failures. This gold version was used as 

an oracle in the experiment. A set of test cases was generated randomly accordingly to the 

known operational profile determined by interviewing the users of the program. Component 

traces obtained during the testing were used for building the software architecture and estimating 

transition probabilities. It follows that for the ESA case study we use an informed approach. 

Figure 3 presents the special case of our methodology for uncertainty analysis used for the 

European Space Agency case study. Details about this case study are given in [Goseva01b], 

[Goseva02b]. 
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Figure 3. Special case of the methodology used for the ESA case study 

DTMC that represents software architecture is shown in Figure 4. Components 1, 2, and 

3 correspond to the Parser, Computational, and Formatting subsystems respectively. State E 

represents the completion of execution.  
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Figure 4. Software architecture for the ESA case study 
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In this experiment we look at the stability of the above Markov chain by perturbing the 

transition probability matrix, that is, the operational profile. Let us consider the transition 

probability matrix of operation profile A denoted by PA and let this matrix be perturbed to matrix 

PB, which is the transition probability matrix of operational profile B of the same application. 

Matrices PA, PB, and the perturb matrix E are given below. 
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 Next, we assess the sensitivity of the stationary probabilities (i.e., components execution 

rates) using the equations (3), (4) and (5). We can observe from Table 1 that the chain 

representing the operational profile A is absolutely stable since each stationary probability is 

insensitive to perturbations in PA in the absolute sense.  

 

States 1 2 3 E 

Stationary Probability 0.3278 0.1945 0.1498 0.3278 

Absolute Change 0.12997 0.12166 0.1217 0.09619 

Relative Change 0.39644 0.62549 0.8119 0.29341 

 

Table 1. Perturbation analysis of ESA case study 

 
We also consider a hypothetical example based on the European Space Agency application 

which has a loop back from component 2 to 1 [Goseva01b], [Goseva02b]. The software 

architecture for hypothetical example is shown in Figure 5. 
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Figure 5. Software architecture for the hypothetical example 

 

We assume that the transition probability matrix PC of the hypothetical example is 

perturbed by matrix E which results into a perturbed matrix PD as shown below. 
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The sensitivity of the stationary probabilities is estimated using equations (3), (4) and (5).  

From the results given in Table 2 it can be seen that the operational profile is not stable in 

relative sense to the perturbations. In particular, the component 3, which has the smallest 

stationary probability, is the most sensitive in relative sense to the changes made to the transition 

probability matrix PC. 

 

States 1 2 3 E 

Stationary Probability 0.35715 0.28571 0.07143 0.28571 

Absolute Change 0.35714 0.5 0.46429 0.35714 

Relative Change 1 1.75 6.5 1.25 

 

 

 

 

 

Table 2. Perturbation analysis of the hypothetical example  
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3.2. Hub Control System case study 

In this section we assess the sensitivity of NASA’s HCS case study using perturbation 

theory. The case study is a Computer Software Configuration Item (CSCI) resident in the Hub 

Control Zone Multiplexers/Demultiplexers (HCZ MDMs) which are installed in the Node 3 

Module of the ISS (International Space Station). For this case study we had available the UML 

use case diagram and sequence diagrams for each use case. Therefore, we are using the intended 

approach to build software architecture. We build DTMCs using UML sequence diagrams that 

present software components used for given scenario and the messages that are exchanged 

between these components. The expression used to estimate the transition probability from 

component i to component j is given by 
i

ij
ij n

n
p = , where is the number of times messages are 

transmitted from component i to component j and is the total number of massages from 

component i to all other components that are present in the sequence diagram. Figure 6 presents 

the special case of our methodology used for the HCS case study. 

ijn

in

 
Figure 6. Special case of the methodology used for HCS case study 
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Figure 7 shows the main use case diagram and all the relationships among the use cases and 

the actors. Each use case is realized by at least one sequence diagram (i.e., scenario).  
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Figure 7. Use case diagram of the HCS case study 

 
 

In this report we illustrate the application of the perturbation analysis on the Both Pumps 

Retry scenario. Figure 8 shows the sequence diagram of this scenario. Analyzing the sequence 

diagram of the Both Pumps Retry scenario given in Figure 8, we construct the DTMC that 

represents the software execution behavior as shown in Figure 9.  
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Figure 8. Sequence diagram of the Both Pumps Retry scenario 
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Figure 9. DTMC for the Both Pumps Retry scenario 

 

The sensitivity of the operational profile of Both Pumps Retry scenario given in Figure 9 is 

analyzed by perturbing the transition probability matrix P. The resulting matrix P~  represents a 

different usage of the same scenario.  
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The results of the perturbation analysis obtained using equations (3), (4), and (5) are 

given in Table 3. Note that the execution rates of components FRITCS and RPCM_MT have the 
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same absolute change. However, the execution rate of the component RPCM_MT is more 

sensitive in relative sense to the perturbations than FRITCS. The component RPCM_LT, which 

has the lowest stationary probability, has the highest value of the relative change of the execution 

rate. This implies that components with lowest stationary probability (i.e., the rarely executed 

components) are more sensitive in relative sense. This observation is very important for software 

verification and validation due to the fact that rarely executed components usually handle critical 

functionality such as for example exception handling or recovery. Further, note that the DTMS 

that describes the execution behavior of the HCS case study consists of a dominant central sate 

(FRITCS) with connections to and from all other states. For this type of software architectures, 

no component execution rate can be excessively sensitive to perturbations in the operational 

profile.   

States S PFMC_LT PFMC_MT FRITCS RPCM_LT RPCM_MT SCITCS E 

Stationary 
Probability 0.133 0.1 0.1 0.3 0.033 0.067 0.133 0.133 

Absolute Change 0.289 0.333 0.333 0.4 0.367 0.4 0.289 0.289 

Relative Change 2.167 3.333 3.333 1.333 11 6 2.167 2.167 

 

Table 3. Perturbation analysis of the HCS case study 

 
3.3.  E-commerce case study 

In this section we analyze the sensitivity of a typical e-commerce application. For 

illustration, we adopt the example of an e-commerce application presented in [Menasce02]. In 

the e-commerce applications the users interact with the Web sites through sessions that consist of 

consecutive request to execute e-business functions (search, add to cart, pay and so on) during a 

single visit to the site. In the example presented in [Menasce02], the user’s navigation pattern 

within a session is captured by so called Customer Behavior Model Graph (CBMG). The CBMG 

describes how the users navigate through the site, which functions they use and the frequency of 

transitions form one function to the other function. Clearly, the CBMG corresponds to a discrete 

time Markov chain.  

Due to a large number of diverse users, a single operational profile is not sufficient to 

describe the use of the Web site by different users.  Thus, in [Menasce02] two operational 

profiles are given showing the usage of the same e-commerce site by two different types of 
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users: an occasional buyer and a heavy buyer. DTMCs for these two operational profiles are 

shown in Figure 10 and Figure 11, respectively.  
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Figure 10. Operational profile for an occasional buyer 
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Figure 11. Operational profile for a heavy buyer 
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Construction of the DTMCs in Figures 10 and 11 includes constructing the structure first and 

then assigning transition probabilities. For Web applications, there is usually a close resemblance 

between navigation patterns and the underling Web design and code because Web sites are 

designed to support directly  such navigations.  Consequently, the basic structure can be easily 

identified from product specification, related design documents and other information sources, 

which corresponds to our intended approach. Also one might use the informed approach such as 

for example to extract the architecture from the HTML code or the Web access logs. Note that in 

our project Performability of Web Based Applications, funded by NASA OSMA Software 

Assurance Research Program (SARP) managed through the NASA Independent Verification and 

Validation Facility, we are addressing construction of the typical usage profiles from the Web 

access logs. 

Here we assess the sensitivity of e-commerce application by perturbing the transition 

probability matrix P that represents the operational profile of an occasional buyer (i.e. DTMC 

shown in Figure 10). The matrix P~  is the resultant transition probability matrix, which 

represents the operational profile of a heavy buyer scenario (i.e. DTMC shown in Figure 11), 

after perturbing the matrix P by matrix E. 
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As explained before the components with lowest execution rates are more sensitive 

relatively to changes in the operational profile. Thus, it can be observed from the results shown 

in Table 4 that the components ‘Add’ and ‘Pay’ which are visited rarely in the operational profile 

of an occasional buyer are having the highest relative changes, that is, they are the most sensitive 

in relative sense to the perturbation in P that leads to the operational profile of a heavy buyer. 

Thus, ‘Add’ and ‘Pay’ exhibit excessive relative change in execution rate due to the changes in 

the operational profile. In particular, the relative change of the expected execution rate of 

component ‘Add’ is one order of magnitude higher and the relative change of the expected 

execution rate of component ‘Pay’ is two orders of magnitude higher than execution rates of 

other components in the e-commerce case study.  
States Entry Browse Search Add Select Pay Exit 

Stationary Probability 0.0542 0.3666 0.3666 0.0078 0.1482 0.0023 0.0542

Absolute Change 0.2365 0.4065 0.4065 0.2672 0.3149 0.2494 0.2365

Relative Change 4.3615 1.1089 1.1089 34.25 2.125 106.58 4.3615

Table 4. Perturbation analysis of the e-commerce case study 
4. Comparison of the methods for uncertainty analysis 

The choice of the most suitable method for uncertainty analysis for a particular application 

may be based on the following criteria: 

� data requirements  

� reliability measures derived 

� accuracy of the solutions 

� scalability with respect to the number of components. 

 In [Goseva02c] we have compared the entropy, method of moments, and Monte Carlo 

simulation accordingly to the above criteria. The characteristics of perturbation analysis as a 

method for uncertainty analysis are the following:   

� Data requirements 

o Low: Point estimates of the transition probabilities. 

� Reliability measures derived 

o NA: Reliability measures are not derived. Instead, we study the sensitivity of the 
expected execution rates of software components to perturbations in the operational 
profile.  

Technical Report, May 2003  Page   19



� Accuracy of the solutions 

o Analytical solution; bounds for the absolute and relative change of components execution 
rates. 

� Scalability 

o Scales well. Could be used for large systems. 
Next we update our “Make a choice” table [Goseva02c], [Goseva02e] that summarizes the 

comparison of different methods for uncertainty analysis considered in FY02 and FY03. “Make a 

choice” table given in Table 5 provides a sound guideline for choosing the most appropriate 

method for a given software application accordingly to the above criteria. 

Method Data 
requirements 

Uncertainty of the 
operational profile 

Reliability 
measures 
derived 

Accuracy of 
the solution Scalability 

Entropy Point estimates � Uncertainty of  
operational 
profile  

� Uncertainty of 
components  

� Expected 
execution rates 
of components 

NA Exact analytical 
solution 

Large 
systems 

Method of 
moments 

Moments of 
components 
reliabilities  
 

NA Moments of 
system reliability 

Approximate 
solution  
� Accuracy may 

be increased 
by higher 
order Taylor 
series 

� No sampling 
errors 

Medium 
systems 

Monte Carlo  
simulation 

� Probability 
distribution 
functions of  
components 
reliabilities and 
transition 
probabilities 
� Generation of 

random numbers 

NA Many 
characteristics 
of system 
reliability 
� Frequency chart 
� Distribution 
� Moments 
� Percentiles 

Approximate 
solution 
� Accuracy may 
be increased by 
increasing the 
sample size 
� Sampling errors 
may be involved 
in case of long 
tail distributions 

Large 
systems 

Perturbation  
analysis 

� Point estimates of 
transition 
probabilities 

� Bounds on the 
absolute and 
relative change of 
components 
execution rates  

NA Analytical 
solution 

Large  
systems  

Table 5. Make a choice table: Comparison of different methods for uncertainty analysis 
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5. Conclusion 
In this report we have presented a new method for uncertainty analysis based on 

perturbation theory that can be used to study how the change in the operational profile affects the 

expected execution rates of software components.  We have applied this method on three case 

studies:  European Space Agency, NASA’s Hub Control System (HCS) from the International 

Space Station (ISS), and an e-commerce application. Several conclusions are made based on 

obtained results:  

� If any stationary probability is relatively insensitive, then all large stationary probabilities are 

insensitive. 

� If a small stationary probability is relatively insensitive, then it is absolutely insensitive and 

the operational profile is stable in both absolute and relative sense. 

� Small stationary probabilities are the ones that appear least likely to be relative insensitive to 

perturbations. 

Based on these conclusions we say that the stability of operational profile can be studied by 

looking at the small stationary probabilities. Further, components with small execution rates (i.e., 

small stationary probabilities) are the most sensitive to changes in the operational profile. This 

observation is very important for software verification and validation due to the fact that rarely 

executed components usually handle critical functionality such as for example exception 

handling or recovery.  

The main focus of our future work is to develop the uncertainty method based on confidence 

intervals that can be used for certification of component based software systems. We will apply 

this method on the currently available case studies and any additional NASA cases studies that 

might be available in the future.   
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